
Similarity Measures of Web Repositories
constructed by Focused Crawling from Database

Driven Websites
J.Tamilselvan1, Dr. A.Senthilrajan2

1Assistant Professor, Department of Computer Science
2Director, Computer Centre

121K.S.Rangasamy College of Arts and Science (Autonomous)
Tiruchengode, Tamilnadu, India

2Alagappa University, Karaikudi, Tamilnadu, India

Abstract: Intelligent systems require knowledge-rich
resources. The most important tasks in information extraction
from the web are webpage structure understanding as many
web sites contain large collections of pages generated using a
common template or layout makes it increasingly difficult to
discover relevant data about a specific topic. Extracting data
from such pages has become an important issue in recent days
as the number of web pages available on the Internet has
growing in exponential. Tools and protocols to extract all this
information have now come in demand as researchers and
web surfers want to discover new knowledge at an ever
increasing rate. A web crawler also known as, a robot or a
spider is a system for the bulk downloading of web pages,
whereas the goal of a focused crawler is seeking pages that are
relevant to a pre-defined set of topics. The topics are specified
not using keywords, but using exemplary documents. Instead
of collecting and indexing those accessible web documents
which can answer all ad-hoc queries, a focused crawler
analyzes its crawl boundary to find the links that are likely to
be most relevant for the crawl, and avoids irrelevant regions
of the Web. Since all search engines take their data fed using
crawlers, it is critical to improve its working ability. As the
size of data is huge, Common Crawlers are no longer
applicable in real life. So there is need to develop a domain
specific crawler builds on stock of existing algorithms. This
led to considerable savings in hardware and network
resources, and helps keep the crawl more up-to-date. This
paper proposed a novel framework called StructWebNLP,
which enables bidirectional integration of page structure
understanding and text understanding in an iterative manner.
We have applied the proposed framework to the judgments
information system to extract text of judgments.

Keywords: Web Crawler, Text Extraction, Structured Web
Data, Deep Web.

1. INTRODUCTION
We observe an ever-increasing quantity of structured data
available on the Web and, in the same instance, the
diversity of the visual structures in which the data are
stored. The prime samples of such structured data is the
Deep Web, which refer to the content on the Web that is
stored as databases and respond by querying HTML forms
[Madhavan et al. 2007]. There is an enormous potential in
combining and re-using this data in creative ways. We have
studied the problem of automatically extracting database
values from such a collection of web pages automatically
with less human participation. We explain a working model

of a web-scraping program developed using the Scrapy
framework (written in Python). The program was framed to
acquire an excellent deal of public archival of information
presently available only in the form of web page HTML
source code, and to acquire new data as it is added to the
online repository. The study involves text extraction from
the web pages that will give an outline of a program that
scrapes and processes the previous collection of data. A
crawler is a program that retrieves and save pages from the
Web, commonly for a Web search engine. A crawler often
has to download hundreds of millions of pages in a short
period and has to constantly monitor and refresh the
downloaded pages. In addition, the crawler ought to avoid
putting too much stress on the visited Web sites and the
crawler’s local network, because they are fundamentally
shared resources. A Web crawler is a program that
downloads Web pages, for a Web search engine or a Web
cache. Roughly, a crawler starts with an initial URL S1. It
first places S1 in a queue, where all URLs to be retrieved
are kept and prioritized. Spidering a website, link by link,
will work for most of the websites. However, it can be a
kind of tedious to examine each different kind of page to
figure out the link structure. We can do a little survey and
experimentation and may find a pattern in the site's URL
that we use to save ourselves a considerable amount of
time. The most obvious examples are sites that obtain
information from database displays the content with a fixed
template and dynamic tag paths. User selects URLs of
his/her own interest and identifies the tag paths of each
Data Region in a Web page or the tag paths of desired data,
the only manual work we need to do is to traverse the
HTML tree and collect x-path where relevant information
kept.

A. Hypertext Crawler
The basic operation of any hypertext crawler is as follows.
The crawler begins with one or more URLs that constitute a
seed set. It picks a URL from this seed set, and then fetches
the web page at that URL. The fetched page parsed, to
extract both the text and the links from the page. The
extracted text fed to a text indexer. The extracted links
(URLs) added to a URL frontier, which at all times consists
of URLs whose corresponding pages have yet to fetch by
the crawler. Initially, the URL frontier contains the seed
set; as pages fetched, the corresponding URLs deleted from

J.Tamilselvan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 89-93

www.ijcsit.com 89

the URL frontier. The entire process may treat as traversing
the web graph. In continuous crawling, the URL of a
fetched page added back to the frontier for fetching again in
the future if needed. This is a simple traversal of the web
graph, which is complicated by the many demands on a
practical web crawling system, the crawler has to fulfill
certain features while fetching pages of high quality.

B. Features of Crawler
Distributed: The crawler should have the ability to execute
in a distributed fashion across multiple machines.
Scalable: The crawler architecture should permit scaling up
the crawl rate by adding extra machines and bandwidth.
Performance and efficiency: The crawl system should
make efficient use of various system resources including
processor, storage, and network bandwidth.
Quality: Given that a significant fraction of all web pages
are of poor utility for serving user query needs, the crawler
should be biased towards fetching “useful” pages first.
Freshness: In many applications, the crawler should
operate in continuous mode it should obtain fresh copies of
previously fetched pages. A search engine crawler, for
instance, can thus ensure that the search engine’s index
contains a current representation of each indexed web page.
Extensible: Crawlers has designed to be extensible in many
ways to cope with new data formats, new fetch protocols,
and so on. This demands that the crawler architecture be
modular.

C. Behavior of Crawler
The behavior of a Web crawler is the outcome of the
combination of policies.

D. Selection Policy
A crawler always downloads just a fraction of the web
pages; it is highly desirable that the downloaded fraction
contains the most relevant pages and not just a random
sample of the Web. Some selection policies are

a. Restricting followed links
b. Path ascending crawling
c. Focused crawling
d. Crawling the deep web

E. Focused Crawler
There are various uses of web crawler, but essentially a
web crawler used by anyone seeking to collect database out
of the internet search engines. Frequently web crawlers
used to collect information about what is available on
public web pages. Their primary purpose is to collect data
so that search term on their site will quickly provide the
surfer with relevant web sites. Linguistics may use a web
crawler to perform a textual analysis that is, they may comb
the internet to determine what words are commonly used
today [1]. A standard crawler crawls through all the pages
in breadth first strategy. When we want to crawl through
some domain then it will be very inefficient. In Fig. 1 we
show the general crawler crawling activity [2]. In Fig. 2
we can see that a focused crawler crawls through domain
specific pages. The non-related pages of a particular
domain not considered [2].

Fig. 1. Basic Crawling

Fig. 2. Focused Crawling

2. RELATED WORKS
Chakrabarti, Berg and Dom [3] described a focused web
crawler with three components, a classifier to assess the
web page significance to the chosen topic, a distiller to
discover the relevant nodes using few link layers, and a
reconfigurable crawler that is governed by the classifier and
distiller. They try to impose various features on the
designated classifier and distiller: Explore links in terms of
their sociology, extract specified web pages based on the
given query, and explore mining communities (training) to
improve the crawling ability with high quality and less
relevant web pages.
Sk.Abdul Nabi et al [4] addressed domain based
information system in which system crawl the information
from the web and added all links to the database related to
specific domain. Because of that searching space and
searching time reduced and as a result, it improves the
performance of the system. They use pattern-matching
algorithm in which input is given as rank table of web page
and then total rank is calculated. Web is very large and
dynamic so searching the required relevant content from
web is very difficult. Grouping the collection from the web
is always challenging. Therefore, there is need to gather
from broad range of domains.
Scott Deerwester et al [5] found a new method for
automatic indexing and retrieval. The method has designed
to overcome a fundamental problem that outbreaks existing
retrieval techniques that try to match words of queries with
words of documents. The problem is that users want to
retrieve based on conceptual content, and individual words
provide unreliable evidence about the conceptual topic.
There are usually many ways to express a given content, so
the literal terms in a user’s query may not match those of a
relevant document. In addition, most words have multiple
meanings, so terms in a user’s query will literally match
terms in documents that are not of interest to user. The
proposed approach use statistical technique to estimate the

J.Tamilselvan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 89-93

www.ijcsit.com 90

latent structure, and get rid of the obscuring “noise”. A
description of documents terms based on the latent
semantic structure used for indexing and retrieval.
Radhika Gupta et al [6] developed a semi-deterministic
algorithm and scoring system that takes advantage of the
Latent Semantic Index scoring system for crawling web
pages that belong to particular domain or specific to the
topic. The proposed algorithm calculates a preference
factor in addition to the LSI score to determine which web
page needs to chosen for precision values as it builds a
queue that is specific to a particular domain/topic that
would not have been possible in breadth first algorithm and
only LSI based information retrieval systems.
Hong-Wei Hao et al [7] developed the improved topic
relevance algorithm for focused crawling. Firstly, they
implement a prototype system of the focused crawler.
Second, experiments on Chinese text corpus shows that
using latent semantic indexing outperforms using TF-IDF
(term frequency-inverse document frequency) for hyperlink
topic relevance prediction and pages topic relevance
calculation. Third, in real crawling experiments on the
prototype system, the crawler using TF-IDF has high
performance with the accumulated topic relevance
increasing quickly at the beginning of the crawling,
however the crawler using LSI can find more related pages
and TF-IDF, they proposed TFIDF+LSI performs the same
crawl task and demonstrates the combination advantage of
TF-IDF and LSI . However, due to the limitation of LSI
and using only anchor text and other factors, topical
crawler using TFIDF+LSI may still cause topic drift.
Ahmad Pesaranghader et al [8] proposed improved measure
called Term frequency-Information Content (TF-IC) to
prioritize terms in a multi-term topic. Through conducted
experiments, we compare our measure against both Term
frequency-Inverse Document frequency (TF_IDF) and
Latent Semantic Indexing (LSI) measures applied in
focused crawlers. Experimental results indicate superiority
of measure over TF-IDF and LSI for collecting both more
relevant web pages of general and specialized multi-term
topics.
M. Diligenti et al [9] presented a focused crawling
algorithm that builds a model for the context within which
topic relevant pages occur on the web. Because of the
major problem in focused crawling which perform
appropriate credit assignment to different documents along
a crawl path, such that short-term gains are not pursued at
the expense of less obvious crawl paths that ultimately
yield larger sets of valuable contents. This context model
can capture typical link hierarchies within which valuable
pages occur, as well as model content on documents that
frequently co-occur with relevant pages. The algorithm
shows significant performance improvements in crawling
efficiency over standard focused crawling.

3. SYSTEM ARCHITECTURE
The focused crawler has four main components: A URL
Iteration continuously set the URL parameter value (Path
tag) by incrementing the parameter values to obtain pages,
a Page Downloader to download pages from web, a
Classifier to make relevance judgments and to decide on

pages crawled, and a Distiller to determine a measure of
centrality of crawled pages.

Fig. 3. Block Diagram of Focused Crawler

Here we briefly outline the basic processes. Fig. 3 shows
the architecture of focused crawler.
A. URL Iteration
URL Iteration contains the address of a dynamic website
and initialized with starting parameter value. The classifier
analyzes whether the content of parsed pages related to
topic or not. If the page is relevant, add the content
extracted from it, to the page repository, otherwise discard
it. There are a large number of URLs pointing to the same
page the crawler is likely to be trapped [10]. A way to
alleviate this problem is to limit the number of pages that a
crawler can get from a domain name. In this paper, the
solution is that URL Iteration has carried for crawling k
(for example, k =2000) pages from same domain.
Advantage of this approach is that the load of crawler to
web servers reduced substantially.

B. Page Downloader
The page downloader fetches URLs from URL queue and
downloads corresponding pages from the internet. In order
to download a page, the page downloader contains a HTTP
client used to send the HTTP request and read the response.
The client needs to set the timeout to ensure that it will not
take much time to read large files or wait for response of
web servers.
Important consideration of a crawler is the Robot Exclusion
Protocol [11]. The protocol provides a mechanism that a
web server administrator can define file access policy used
to indicate which files the crawlers should not be access.
The method used to exclude robots from a server is to
create a file on the server, and this file must be accessible
via HTTP on the local URL "/robots.txt". Before a crawler
download pages from a server, it must first obtain the
appropriate robots.txt file and check whether the

J.Tamilselvan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 89-93

www.ijcsit.com 91

downloading allowed or not. The files are cached to
improve efficiency, which can avoid re-downloading the
file when downloading pages from the same server. Our
focused crawler follows the Robot Exclusion Protocol.
C. Relevance Calculation
A similarity/distance measure must be determined before
clustering. The measure reflects the degree of closeness or
separation of the target objects and should correspond to
the characteristics that are believed to distinguish the
clusters embedded in the data. In many cases, these
characteristics are dependent on the data or the problem
context at hand, and there is no measure that is universally
best for all kinds of clustering problems.

4. EXPERIMENT
The main components of web search engines are systems
that assemble a corpus of web pages, index them, and allow
users to issue queries against the index and find the web
pages that match the queries. A related use is web
archiving, where large sets of web pages periodically
collected and archived for future use. Further use is web
data mining, where web pages analyzed for statistical
properties, or where data analytics performed on them.
Finally, web-monitoring services allow their clients to
submit standing queries, or triggers, and they continuously
crawl the web and notify clients of pages that match those
given queries.

Organization of Experiment
We briefly describe how we have organized the
experiment. For each input collection of web pages that we
used we present the following steps as part of achieving the
experimental results.
1. Source Pages: Define the source pages in the collection.
2. Detecting URL values: Find the path tags that used as

parameter values for fetching pages.
3. Extracted Template: The template deduce by our system

for the collection.
4. Extracted Schema: The schema deduce by our system.
5. Extracted Data: The data encoded in each page that

extracted by our system.
6. Defining URL: Set the path tags (URL values) for the

sites along with base URL.
7. Manual Schema: We deduce the schema manually by

using the semantics of the information in the pages for
evaluating the system.

Scrapy Code

We start by modeling the item to hold the site’s data obtained
from judis.nic.in. As we want to obtain the name, url and
description of the sites, we define fields for each of these three
attributes.

The above code runs the spider with name judis that will send
requests to the judis.nic.in domain then retrieves the page of
which contains text document starting from the first page and
reads subsequent pages. When the filename (URL parameter
value) is incremented with the continuous values for filename it
saves the continuous pages from one to two thousand in the
prescribed local storage device location.

To extract textual information from the pages, we use the XPath.

4.1 Data Sets
This work experiments by giving the seed URL as
http://judis.nic.in The Judgments Information system
consists of the Judgments of the Top Court and several
other Courts has 30,000+ datasets (Judgments). The path
tag (URL parameter value) is incremented subsequently
with the continuous values. It fetches the web page present
at that URL by using the above given scrappy code. The
fetched pages are then parsed, to extract both the text and
the links if any from the page.

4.2 Evaluation
In order to measure the similarity of documents in the web
repository, Top 400 documents returned by the above-
mentioned algorithm will be used. Then a count of different
URLs present will be prepared. This will be indication for
site recommendation. In addition, pages of spam sites also
identified. Minimum number of overlapping document,
more relevant page, less traffic consume less bandwidth
and most updated page storage are to be considered as far
as this type of continuous ordering crawlers produce mere
common contents as the crawler fetches from the same site
of different contents. We use entropy as a measure of
quality of the clusters.

4.3 Result Analysis
Text document clustering plays an important role in
providing intuitive navigation and browsing mechanisms
by organizing large amounts of information into a small
number of meaningful clusters. Clustering method has to
embed the documents in a suitable similarity space. While

response.xpath('//textarea()').extract()

import scrappy
import os.path

class JudisSpider(scrapy.Spider):
 name = "judis"
 allowed_domains = ["judis.nic.in"]
 start_url = [
 "http://judis.nic.in/supremecourt/imgst.aspx?filename=1"
]
 def parse(self, response):
 for i in range(1,2000):
 filename = response.url.split("/")[-2] + str(i)+".html"
 with open(filename, 'wb') as f:
 uname = str(i)+".html"
 save_path = 'D:/jdocs/'
 completeName = os.path.join(save_path, uname)
 f.write(response.body)

import scrapy
 class JudisTxt(scrapy.Item):
 title = scrapy.Field()
 link = scrapy.Field()
 desc = scrapy.Field()

J.Tamilselvan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 89-93

www.ijcsit.com 92

several clustering methods and the associated similarity
measures have been proposed in the past, there is no
systematic comparative study of the impact of similarity
measures on cluster quality. This may be because the
popular cost criteria do not readily translate across
qualitatively different measures. In this paper we compare
four popular similarity measures (Euclidean, cosine,
Pearson correlation and extended Jaccard) in conjunction
with different types of vector space representation
(boolean, term frequency and term frequency and inverse
document frequency) of documents. Clustering of
documents is performed using generalized k-Means; a
Partitioned based clustering technique on high dimensional
sparse data representing text documents. Performance
measured against a human-imposed classification of Topic
categories. We conducted a number of experiments and
used entropy measure to assure statistical significance of
results. Cosine, Pearson correlation and extended Jaccard
similarities emerge as the best measures to capture human
categorization behavior, while Euclidean measures perform
poor.
In this work seed points are statically chosen, but efficiency
can be improved if seeds selected are random or run the
code more than once to check the efficiency. As shown in
Table 1, Euclidean distance performs worst while the
performance of other measures is quite similar. From our
results it is observed that Boolean representation with
Pearson measure has non-zero clusters. Hence the overall
entropy for Boolean representation table shows NaN values
for other measures as some of the clusters are empty. On an
average, the Jaccard and Pearson measures are slightly
better in generating more coherent clusters, which means
the clusters have lower entropy scores.

Table 1: Entropy Results of Different Vector Space
Representations Using Crawled dataset

Cosine Jaccard Euclidean Pearson
Boolean NaN NaN NaN 0.07
Freq.
Count

0.15 0.11 0.28 0.07

TF-IDF 0.07 0.08 0.28 0.07

The Euclidean distance proved as an ineffective metric for
modeling the similarity between documents. The Jaccard
and Pearson’s coefficient tend to outperform the cosine
similarity.

4.4 Performance Evaluation Measures
A human or crawler must identify web sites containing
form interfaces that lead to deep web content. [12] The first
step in resource selection is to model the content available
at a particular deep web site, e.g., using query-based
sampling [13]. Finally, a crawler must extract the content
lying behind the form interfaces of the selected content
sources. A query consists of a single data value submitted
to the form interface, which retrieves the set of content

items directly connected to the data. Each query incurs
some cost to the crawler, typically dominated by the
overhead of downloading and processing each member of
the result set, and hence modeled as being linearly
proportional to result cardinality.

5. CONCLUSION

In this study, we found that all the measures have
significant effect on Partitioned clustering of text
documents except for the Euclidean distance measurer.
Pearson correlation coefficient is slightly better as the
resulting clustering solutions are more balanced and is
nearer to the manually created categories. The Jaccard and
Pearson coefficient measures find more coherent clusters.
Considering the type of cluster analysis involved in this
study, we can see that there are three components that
affect the final results—representation of the documents,
distance or similarity measures considered, and the
clustering algorithm itself. In our future work our intension
is to apply semantics knowledge to the document
representations to represent relationships between terms
and study the effect of these similarity measures
comprehensively.

REFERENCES
[1] Gautam Pant, Padmini Srinivasan1, Filippo Menczer, “Crawling the

Web”, Department of Management Sciences, The University of
Iowa, Iowa City IA 52242, USA.

[2] Debajyoti Mukhopadhyay, Arup Biswas, Sukanta Sinha, “A New
Approach to Design Domain Specific Ontology Based Web
Crawler”, West Bengal University of Technology, pp.70091.

[3] Chakrabarti, Soumen, Martin van den Berg, and Byron Dom.
"Focused crawling: a new approach to topic-specific Web resource
discovery", Elsevier, 1999.

[4] Sk.Abdul Nabi, Dr. P.Premchand, “Effective Performance of
Information Retrieval by using Domain Based Crawler”, Vol. 4,
No.7, 2013.

[5] Scott Deerwester, Susan T. Dumais, George W. Furnas and Thomas
K. Landauer, Richard Harshman, “Indexing by Latent Semantic
Analysis”, 41(6):391-407, 1990.

[6] Radhika Gupta, AP Nidhi, “Focused Crawling System based in
Improved LSI”, Volume 2 Issue 9, September 2013.

[7] Hong-Wei Hao, Cui-Xia Mu, Xu-Cheng Yin, Shen Li, Zhi-Bin
Wang, “An Improved Topic Relevance Algorithm for focused
Crawling”.

[8] Ali Pesaranghader, Ahmad Pesaranghader, Norwati Mustapha,
Nurfadhlina Mohd Sharef, “Improving Multi-term Topics Focused
Crawling by Introducing Term Frequencyy-Information Content
(TF-IC) Measure”, September 2013.

[9] M. Diligenti, F. M. Coetzee, S. Lawrence, C. L. Giles and M. Gori,
“Focused Crawling Using Context Graphs”, NEC Research Institute,
Princeton, NJ 08540-6634 USA.

[10] Allan Heydon and Marc Najork. Mercator: A scalable, extensible
Web crawler. World Wide Web, 1999, 2(4):219–229.

[11] A Standard for Robot Exclusion[EB/OL].
http://www.robotstxt.org/wc/norobots.html.

[12] L. Barbosa and J. Freire, “An adaptive crawler for locating hidden-
web entry points”, in Proceedings of the 16th International World
Wide Web Conference, 2007.

[13] J. Callan and M. Connell, “Query-based sampling of text databases”,
ACM Transactions on Information Systems, vol. 19, no. 2, pp. 97–
130, 2001.

J.Tamilselvan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 89-93

www.ijcsit.com 93

