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Abstract: Intelligent systems require knowledge-rich 
resources. The most important tasks in information extraction 
from the web are webpage structure understanding as many 
web sites contain large collections of pages generated using a 
common template or layout makes it increasingly difficult to 
discover relevant data about a specific topic. Extracting data 
from such pages has become an important issue in recent days 
as the number of web pages available on the Internet has 
growing in exponential. Tools and protocols to extract all this 
information have now come in demand as researchers and 
web surfers want to discover new knowledge at an ever 
increasing rate. A web crawler also known as, a robot or a 
spider is a system for the bulk downloading of web pages, 
whereas the goal of a focused crawler is seeking pages that are 
relevant to a pre-defined set of topics. The topics are specified 
not using keywords, but using exemplary documents. Instead 
of collecting and indexing those accessible web documents 
which can answer all ad-hoc queries, a focused crawler 
analyzes its crawl boundary to find the links that are likely to 
be most relevant for the crawl, and avoids irrelevant regions 
of the Web. Since all search engines take their data fed using 
crawlers, it is critical to improve its working ability. As the 
size of data is huge, Common Crawlers are no longer 
applicable in real life. So there is need to develop a domain 
specific crawler builds on stock of existing algorithms. This 
led to considerable savings in hardware and network 
resources, and helps keep the crawl more up-to-date. This 
paper proposed a novel framework called StructWebNLP, 
which enables bidirectional integration of page structure 
understanding and text understanding in an iterative manner. 
We have applied the proposed framework to the judgments 
information system to extract text of judgments. 

Keywords: Web Crawler, Text Extraction, Structured Web 
Data, Deep Web. 

1. INTRODUCTION
We observe an ever-increasing quantity of structured data 
available on the Web and, in the same instance, the 
diversity of the visual structures in which the data are 
stored. The prime samples of such structured data is the 
Deep Web, which refer to the content on the Web that is 
stored as databases and respond by querying HTML forms 
[Madhavan et al. 2007]. There is an enormous potential in 
combining and re-using this data in creative ways. We have 
studied the problem of automatically extracting database 
values from such a collection of web pages automatically 
with less human participation. We explain a working model 

of a web-scraping program developed using the Scrapy 
framework (written in Python). The program was framed to 
acquire an excellent deal of public archival of information 
presently available only in the form of web page HTML 
source code, and to acquire new data as it is added to the 
online repository. The study involves text extraction from 
the web pages that will give an outline of a program that 
scrapes and processes the previous collection of data. A 
crawler is a program that retrieves and save pages from the 
Web, commonly for a Web search engine. A crawler often 
has to download hundreds of millions of pages in a short 
period and has to constantly monitor and refresh the 
downloaded pages. In addition, the crawler ought to avoid 
putting too much stress on the visited Web sites and the 
crawler’s local network, because they are fundamentally 
shared resources. A Web crawler is a program that 
downloads Web pages, for a Web search engine or a Web 
cache. Roughly, a crawler starts with an initial URL S1. It 
first places S1 in a queue, where all URLs to be retrieved 
are kept and prioritized. Spidering a website, link by link, 
will work for most of the websites. However, it can be a 
kind of tedious to examine each different kind of page to 
figure out the link structure. We can do a little survey and 
experimentation and may find a pattern in the site's URL 
that we use to save ourselves a considerable amount of 
time. The most obvious examples are sites that obtain 
information from database displays the content with a fixed 
template and dynamic tag paths. User selects URLs of 
his/her own interest and identifies the tag paths of each 
Data Region in a Web page or the tag paths of desired data, 
the only manual work we need to do is to traverse the 
HTML tree and collect x-path where relevant information 
kept. 

A. Hypertext Crawler
The basic operation of any hypertext crawler is as follows.
The crawler begins with one or more URLs that constitute a
seed set. It picks a URL from this seed set, and then fetches
the web page at that URL. The fetched page parsed, to
extract both the text and the links from the page. The
extracted text fed to a text indexer. The extracted links
(URLs) added to a URL frontier, which at all times consists
of URLs whose corresponding pages have yet to fetch by
the crawler. Initially, the URL frontier contains the seed
set; as pages fetched, the corresponding URLs deleted from

J.Tamilselvan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (1) , 2017, 89-93

www.ijcsit.com 89



the URL frontier. The entire process may treat as traversing 
the web graph. In continuous crawling, the URL of a 
fetched page added back to the frontier for fetching again in 
the future if needed. This is a simple traversal of the web 
graph, which is complicated by the many demands on a 
practical web crawling system, the crawler has to fulfill 
certain features while fetching pages of high quality.  
 
B. Features of Crawler  
Distributed: The crawler should have the ability to execute 
in a distributed fashion across multiple machines. 
Scalable: The crawler architecture should permit scaling up 
the crawl rate by adding extra machines and bandwidth.  
Performance and efficiency: The crawl system should 
make efficient use of various system resources including 
processor, storage, and network bandwidth. 
Quality: Given that a significant fraction of all web pages 
are of poor utility for serving user query needs, the crawler 
should be biased towards fetching “useful” pages first. 
Freshness: In many applications, the crawler should 
operate in continuous mode it should obtain fresh copies of 
previously fetched pages. A search engine crawler, for 
instance, can thus ensure that the search engine’s index 
contains a current representation of each indexed web page.  
Extensible: Crawlers has designed to be extensible in many 
ways to cope with new data formats, new fetch protocols, 
and so on. This demands that the crawler architecture be 
modular. 
 
C. Behavior of Crawler 
The behavior of a Web crawler is the outcome of the 
combination of policies. 
 
D. Selection Policy 
A crawler always downloads just a fraction of the web 
pages; it is highly desirable that the downloaded fraction 
contains the most relevant pages and not just a random 
sample of the Web. Some selection policies are 

a. Restricting followed links 
b. Path ascending crawling 
c. Focused crawling  
d. Crawling the deep web 

 
E. Focused Crawler 
There are various uses of web crawler, but essentially a 
web crawler used by anyone seeking to collect database out 
of the internet search engines. Frequently web crawlers 
used to collect information about what is available on 
public web pages. Their primary purpose is to collect data 
so that search term on their site will quickly provide the 
surfer with relevant web sites. Linguistics may use a web 
crawler to perform a textual analysis that is, they may comb 
the internet to determine what words are commonly used 
today [1]. A standard crawler crawls through all the pages 
in breadth first strategy. When we want to crawl through 
some domain then it will be very inefficient. In Fig. 1 we 
show the general crawler crawling activity [2].  In Fig. 2 
we can see that a focused crawler crawls through domain 
specific pages. The non-related pages of a particular 
domain not considered [2]. 

 
Fig. 1. Basic Crawling 

 

 
 

Fig. 2. Focused Crawling 
 

2. RELATED WORKS 
Chakrabarti, Berg and Dom [3] described a focused web 
crawler with three components, a classifier to assess the 
web page significance to the chosen topic, a distiller to 
discover the relevant nodes using few link layers, and a 
reconfigurable crawler that is governed by the classifier and 
distiller. They try to impose various features on the 
designated classifier and distiller: Explore links in terms of 
their sociology, extract specified web pages based on the 
given query, and explore mining communities (training) to 
improve the crawling ability with high quality and less 
relevant web pages.  
Sk.Abdul Nabi et al [4] addressed domain based 
information system in which system crawl the information 
from the web and added all links to the database related to 
specific domain. Because of that searching space and 
searching time reduced and as a result, it improves the 
performance of the system. They use pattern-matching 
algorithm in which input is given as rank table of web page 
and then total rank is calculated. Web is very large and 
dynamic so searching the required relevant content from 
web is very difficult. Grouping the collection from the web 
is always challenging. Therefore, there is need to gather 
from broad range of domains.  
Scott Deerwester et al [5] found a new method for 
automatic indexing and retrieval. The method has designed 
to overcome a fundamental problem that outbreaks existing 
retrieval techniques that try to match words of queries with 
words of documents. The problem is that users want to 
retrieve based on conceptual content, and individual words 
provide unreliable evidence about the conceptual topic. 
There are usually many ways to express a given content, so 
the literal terms in a user’s query may not match those of a 
relevant document. In addition, most words have multiple 
meanings, so terms in a user’s query will literally match 
terms in documents that are not of interest to user. The 
proposed approach use statistical technique to estimate the 
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latent structure, and get rid of the obscuring “noise”. A 
description of documents terms based on the latent 
semantic structure used for indexing and retrieval. 
Radhika Gupta et al [6] developed a semi-deterministic 
algorithm and scoring system that takes advantage of the 
Latent Semantic Index scoring system for crawling web 
pages that belong to particular domain or specific to the 
topic. The proposed algorithm calculates a preference 
factor in addition to the LSI score to determine which web 
page needs to chosen for precision values as it builds a 
queue that is specific to a particular domain/topic that 
would not have been possible in breadth first algorithm and 
only LSI based information retrieval systems. 
Hong-Wei Hao et al [7] developed the improved topic 
relevance algorithm for focused crawling. Firstly, they 
implement a prototype system of the focused crawler. 
Second, experiments on Chinese text corpus shows that 
using latent semantic indexing outperforms using TF-IDF 
(term frequency-inverse document frequency) for hyperlink 
topic relevance prediction and pages topic relevance 
calculation. Third, in real crawling experiments on the 
prototype system, the crawler using TF-IDF has high 
performance with the accumulated topic relevance 
increasing quickly at the beginning of the crawling, 
however the crawler using LSI can find more related pages 
and TF-IDF, they proposed TFIDF+LSI performs the same 
crawl task and demonstrates the combination advantage of 
TF-IDF and LSI . However, due to the limitation of LSI 
and using only anchor text and other factors, topical 
crawler using TFIDF+LSI may still cause topic drift.  
Ahmad Pesaranghader et al [8] proposed improved measure 
called Term frequency-Information Content (TF-IC) to 
prioritize terms in a multi-term topic. Through conducted 
experiments, we compare our measure against both Term 
frequency-Inverse Document frequency (TF_IDF) and 
Latent Semantic Indexing (LSI) measures applied in 
focused crawlers. Experimental results indicate superiority 
of measure over TF-IDF and LSI for collecting both more 
relevant web pages of general and specialized multi-term 
topics. 
M. Diligenti et al [9] presented a focused crawling 
algorithm that builds a model for the context within which 
topic relevant pages occur on the web. Because of the 
major problem in focused crawling which perform 
appropriate credit assignment to different documents along 
a crawl path, such that short-term gains are not pursued at 
the expense of less obvious crawl paths that ultimately 
yield larger sets of valuable contents. This context model 
can capture typical link hierarchies within which valuable 
pages occur, as well as model content on documents that 
frequently co-occur with relevant pages. The algorithm 
shows significant performance improvements in crawling 
efficiency over standard focused crawling. 
 

3. SYSTEM ARCHITECTURE 
The focused crawler has four main components: A URL 
Iteration continuously set the URL parameter value (Path 
tag) by incrementing the parameter values to obtain pages, 
a Page Downloader to download pages from web, a 
Classifier to make relevance judgments and to decide on 

pages crawled, and a Distiller to determine a measure of 
centrality of crawled pages.  
 

 
 

Fig. 3. Block Diagram of Focused Crawler 
 
Here we briefly outline the basic processes. Fig. 3 shows 
the architecture of focused crawler.  
A. URL Iteration 
URL Iteration contains the address of a dynamic website 
and initialized with starting parameter value. The classifier 
analyzes whether the content of parsed pages related to 
topic or not. If the page is relevant, add the content 
extracted from it, to the page repository, otherwise discard 
it. There are a large number of URLs pointing to the same 
page the crawler is likely to be trapped [10]. A way to 
alleviate this problem is to limit the number of pages that a 
crawler can get from a domain name. In this paper, the 
solution is that URL Iteration has carried for crawling k 
(for example, k =2000) pages from same domain. 
Advantage of this approach is that the load of crawler to 
web servers reduced substantially. 
 
B. Page Downloader 
The page downloader fetches URLs from URL queue and 
downloads corresponding pages from the internet. In order 
to download a page, the page downloader contains a HTTP 
client used to send the HTTP request and read the response. 
The client needs to set the timeout to ensure that it will not 
take much time to read large files or wait for response of 
web servers.  
Important consideration of a crawler is the Robot Exclusion 
Protocol [11]. The protocol provides a mechanism that a 
web server administrator can define file access policy used 
to indicate which files the crawlers should not be access. 
The method used to exclude robots from a server is to 
create a file on the server, and this file must be accessible 
via HTTP on the local URL "/robots.txt". Before a crawler 
download pages from a server, it must first obtain the 
appropriate robots.txt file and check whether the 
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downloading allowed or not. The files are cached to 
improve efficiency, which can avoid re-downloading the 
file when downloading pages from the same server. Our 
focused crawler follows the Robot Exclusion Protocol. 
C. Relevance Calculation 
A similarity/distance measure must be determined before 
clustering. The measure reflects the degree of closeness or 
separation of the target objects and should correspond to 
the characteristics that are believed to distinguish the 
clusters embedded in the data. In many cases, these 
characteristics are dependent on the data or the problem 
context at hand, and there is no measure that is universally 
best for all kinds of clustering problems. 
 

4. EXPERIMENT 
The main components of web search engines are systems 
that assemble a corpus of web pages, index them, and allow 
users to issue queries against the index and find the web 
pages that match the queries. A related use is web 
archiving, where large sets of web pages periodically 
collected and archived for future use. Further use is web 
data mining, where web pages analyzed for statistical 
properties, or where data analytics performed on them. 
Finally, web-monitoring services allow their clients to 
submit standing queries, or triggers, and they continuously 
crawl the web and notify clients of pages that match those 
given queries. 
 
Organization of Experiment 
We briefly describe how we have organized the 
experiment. For each input collection of web pages that we 
used we present the following steps as part of achieving the 
experimental results.  
1. Source Pages: Define the source pages in the collection.  
2. Detecting URL values: Find the path tags that used as 

parameter values for fetching pages. 
3. Extracted Template: The template deduce by our system 

for the collection.  
4. Extracted Schema: The schema deduce by our system.  
5. Extracted Data: The data encoded in each page that 

extracted by our system.  
6. Defining URL: Set the path tags (URL values) for the 

sites along with base URL. 
7. Manual Schema: We deduce the schema manually by 

using the semantics of the information in the pages for 
evaluating the system. 

 
Scrapy Code 

 
 
We start by modeling the item to hold the site’s data obtained 
from judis.nic.in. As we want to obtain the name, url and 
description of the sites, we define fields for each of these three 
attributes. 

 
 
The above code runs the spider with name judis that will send 
requests to the judis.nic.in domain then retrieves the page of 
which contains text document starting from the first page and 
reads subsequent pages. When the filename (URL parameter 
value) is incremented with the continuous values for filename it 
saves the continuous pages from one to two thousand in the 
prescribed local storage device location. 
 
To extract textual information from the pages, we use the XPath. 

 
 
4.1 Data Sets 
This work experiments by giving the seed URL as 
http://judis.nic.in The Judgments Information system 
consists of the Judgments of the Top Court and several 
other Courts has 30,000+ datasets (Judgments). The path 
tag (URL parameter value) is incremented subsequently 
with the continuous values. It fetches the web page present 
at that URL by using the above given scrappy code. The 
fetched pages are then parsed, to extract both the text and 
the links if any from the page. 
 
4.2 Evaluation 
In order to measure the similarity of documents in the web 
repository, Top 400 documents returned by the above-
mentioned algorithm will be used. Then a count of different 
URLs present will be prepared. This will be indication for 
site recommendation. In addition, pages of spam sites also 
identified. Minimum number of overlapping document, 
more relevant page, less traffic consume less bandwidth 
and most updated page storage are to be considered as far 
as this type of continuous ordering crawlers produce mere 
common contents as the crawler fetches from the same site 
of different contents. We use entropy as a measure of 
quality of the clusters.   
 
4.3 Result Analysis 
Text document clustering plays an important role in 
providing intuitive navigation and browsing mechanisms 
by organizing large amounts of information into a small 
number of meaningful clusters. Clustering method has to 
embed the documents in a suitable similarity space. While 

response.xpath('//textarea()').extract() 

import scrappy 
import os.path 
 
class JudisSpider(scrapy.Spider): 
    name = "judis" 
    allowed_domains = ["judis.nic.in"] 
    start_url = [ 
        "http://judis.nic.in/supremecourt/imgst.aspx?filename=1" 
    ] 
    def parse(self, response): 
         for i in range(1,2000): 
             filename = response.url.split("/")[-2] + str(i)+".html" 
             with open(filename, 'wb') as f: 
 uname = str(i)+".html" 
 save_path = 'D:/jdocs/' 
                    completeName = os.path.join(save_path, uname) 
                    f.write(response.body) 

 

import scrapy 
      class JudisTxt(scrapy.Item): 
              title = scrapy.Field() 
              link = scrapy.Field() 
              desc = scrapy.Field() 
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several clustering methods and the associated similarity 
measures have been proposed in the past, there is no 
systematic comparative study of the impact of similarity 
measures on cluster quality. This may be because the 
popular cost criteria do not readily translate across 
qualitatively different measures. In this paper we compare 
four popular similarity measures (Euclidean, cosine, 
Pearson correlation and extended Jaccard) in conjunction 
with different types of vector space representation 
(boolean, term frequency and term frequency and inverse 
document frequency) of documents. Clustering of 
documents is performed using generalized k-Means; a 
Partitioned based clustering technique on high dimensional 
sparse data representing text documents. Performance 
measured against a human-imposed classification of Topic 
categories. We conducted a number of experiments and 
used entropy measure to assure statistical significance of 
results. Cosine, Pearson correlation and extended Jaccard 
similarities emerge as the best measures to capture human 
categorization behavior, while Euclidean measures perform 
poor. 
In this work seed points are statically chosen, but efficiency 
can be improved if seeds selected are random or run the 
code more than once to check the efficiency. As shown in 
Table 1, Euclidean distance performs worst while the 
performance of other measures is quite similar. From our 
results it is observed that Boolean representation with 
Pearson measure has non-zero clusters. Hence the overall 
entropy for Boolean representation table shows NaN values 
for other measures as some of the clusters are empty. On an 
average, the Jaccard and Pearson measures are slightly 
better in generating more coherent clusters, which means 
the clusters have lower entropy scores. 

Table 1: Entropy Results of Different Vector Space 
Representations Using Crawled dataset 

Cosine Jaccard Euclidean Pearson 
Boolean NaN NaN NaN 0.07 
Freq. 
Count 

0.15 0.11 0.28 0.07 

TF-IDF 0.07 0.08 0.28 0.07 

The Euclidean distance proved as an ineffective metric for 
modeling the similarity between documents. The Jaccard 
and Pearson’s coefficient tend to outperform the cosine 
similarity. 

4.4 Performance Evaluation Measures 
A human or crawler must identify web sites containing 
form interfaces that lead to deep web content. [12] The first 
step in resource selection is to model the content available 
at a particular deep web site, e.g., using query-based 
sampling [13]. Finally, a crawler must extract the content 
lying behind the form interfaces of the selected content 
sources. A query consists of a single data value submitted 
to the form interface, which retrieves the set of content 

items directly connected to the data. Each query incurs 
some cost to the crawler, typically dominated by the 
overhead of downloading and processing each member of 
the result set, and hence modeled as being linearly 
proportional to result cardinality. 

5. CONCLUSION

In this study, we found that all the measures have 
significant effect on Partitioned clustering of text 
documents except for the Euclidean distance measurer. 
Pearson correlation coefficient is slightly better as the 
resulting clustering solutions are more balanced and is 
nearer to the manually created categories. The Jaccard and 
Pearson coefficient measures find more coherent clusters. 
Considering the type of cluster analysis involved in this 
study, we can see that there are three components that 
affect the final results—representation of the documents, 
distance or similarity measures considered, and the 
clustering algorithm itself. In our future work our intension 
is to apply semantics knowledge to the document 
representations to represent relationships between terms 
and study the effect of these similarity measures 
comprehensively. 
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